Amnni ad icqqa ad t tfhmt !
Amnni ad gis kra n iwalwn nna ur iẓḍaṛ yan ad tn ifhm iɣ ur issin ɣ umawal iẓlin n tutlayt taclḥiyt tatrart.
Mad igan afssay ? Fad ad tfhmt mad gis illan tzḍart ad tawst i yixf nnk s umawal lli illan ɣ izddar akkʷ n tasna. Iɣ t ur tufit, tzḍart ad nn taggʷt ɣ imawaln d isgzawaln.

Amḍan amnzu iga yan umḍan ummid agaman ilan ɣar sin inbḍayn imyallan igan ummidn gn imufrarn (ad tn igan 1 d nttan nit). S ɣmka, 1 ur igi amnzu acku ur dars abla yan unbḍay ummid amufrar; ula 0 ur t igi acku issn ad ittubḍa f imḍanen ummidn imufrarn s timmad nnsn.

Ɣ unmgal, amḍan ummid arilm igan afaris n sin imḍanen ummidn igamanen nttini as uddis. S umdya 6 d 12 d uddisn acku 6 = 2 × 3 d 12 = 3 × 4 nɣ 2 × 6, mac 11 iga amnzu acku 1 d 11 ka igan inbḍayn nns.

Imḍanen 0 d 1 ur gin imnza wala gan uddisn. kra n imusnaktn ssiḍinen zikk-lli (ar tasut tiss 19) 1 d amḍan amnzu, mac ɣ tizwuri n tasut tiss 20, issinf yan umsasa 1 zɣ imḍanen imnza[1].

25 n imḍanen imnza imẓẓiyn f 100 :

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 d 91.

Isaɣuln

ssnfl
  1. Chris Caldwell et Yeng Xiong, What is the smallest prime ?, un historique de la question de la primalité de 1. Publié dans: Journal of Integer Sequences 15 (2012), no 9, Article 12.9.7, 14 pp.



Aggur:Tusnakt/Tin imgradn