Aggur n
Tusnakt

Uṭṭun n imnnitn g waggur ad : 46
Gr iwalln nnk f taggayin n waggur ad

Amgrad n ɣassa

Alugaritm anipiri

Alugaritm agamanAlugaritm anipiri (s tanglizt : Natural logarithm) tga yat tasɣnt nɣ twwuri tettuysan bahra ɣ tusnakt, ar tsnfal afaris s timrnit zund akkʷ tisɣnin ilugaritm. Ar tt ntara s ɣmk-ad : . Ar nttini mas-d alugaritm agaman nɣ anipiri iga s uzadur n acku , iga alugaritm agaman ula tamnzut n tasɣnt : ɣ uzilal .

Alugaritm ad dars yan yism yaḍni abla "agaman", iga-tt "anipiri". Ism ad yuckad zɣ John Napir nna igan yan umusnak askatlandi, nttat ad akkʷ izwarn ay-skr taflwit talugaritm ( ur trwas xtad lli nssn ɣila nkkni ).

Tettyawskar tazmilt n ulugaritm nna f nsawal nkkni ɣila s ifassn n Grégoire de Saint-Vincent d Alphonse Antonio de Sarasa ɣ usggʷas n 1649

Ad tg , nzḍar ad nini mas-d asnml n tasɣnt talugaritm tga-tt unrar lli illan ɣ izddar n tasɣnt gr d 1.

Ɣikad ast nttara :

... (Ɣr uggar...)


Tawlaft n ɣassa

Asktiɣmr tga yan ugmiw ɣ tusnakt nna itxdamn s izdayn gr izarutn d tiɣmriwin ɣ ammas n imkṛaḍn d tisɣan tisktuɣmirin zund ukan sinus, kusinus d tanjunt.


Tamyagart n ɣassa

Ɣ tusnakt, Targadda nɣ tamyagart n Cauchy–Schwarz, tettawsan ula s yism n targadda n Cauchy–Bunyakovsky–Schwarz, tga yat targadda bahra istawhman ɣ tusnakt kullut, ar sis nswurri ɣ aljibr imzirg, taslṭ, tiẓri n tsqqart d kigan n tɣawsiwin yaḍni. Targadda ad issufɣt-id yan umusnak afransis iga s yism Augustin-Louis Cauchy ɣ usggwas n 1821, sliɣ yufa Viktor Bunyakovsky yat targadda trwast akk ɣ mad izdin d aɣrd ɣ usggwas n 1859, mn bɛd yufatt daɣ yan umusnak almani Hermann Amandus Schwarz ɣ usggwas n 1888.

Mad aɣ tettini

Ar ttini targadda n Cauchy–Schwarz mas i akk sin imawayn d n yat tallunt gis afaris agnsan hann rad darnɣ tili

maɣ iga yan ufaris agnsan. S umdya afaris agnsan gis afaris afsnan n ilawn d ismlaln. S ɣmkad, iɣ nusi aẓur uzmir-sin ɣ tsgiwin s snat, d iɣ asn nga alugn. Ar nttafa targadda ad :

D yat tɣawsa yaḍn, tasgiwin s snat gaddan iɣ d gan ilelliyn imzirgn (yaɛni gan imsadaɣn). Iɣ d d ufaris agnsan iga afaris agnsan asmlal anaway, hann targadda tzḍar ad ttyura zund ɣikad (maɣ tirra n taɛṛṛaḍt ar sis nmmal unaftay n ismlaln): i , darnɣ

Ad t igan,

(Ɣr uggar...)



Amḍan amnzu

Amḍan amnzu iga yan umḍan ummid agaman ilan ɣar sin inbḍayn imyallan igan ummidn gn imufrarn (ad tn igan 1 d nttan nit). S ɣmka, 1 ur igi amnzu acku ur dars abla yan unbḍay ummid amufrar; ula 0 ur t igi acku issn ad ittubḍa f imḍanen ummidn imufrarn s timmad nnsn.

Ɣ unmgal, amḍan ummid arilm igan afaris n sin imḍanen ummidn igamanen nttini as uddis. S umdya 6 d 12 d uddisn acku 6 = 2 × 3 d 12 = 3 × 4 nɣ 2 × 6, mac 11 iga amnzu acku 1 d 11 ka igan inbḍayn nns.

Imḍanen 0 d 1 ur gin imnza wala gan uddisn. kra n imusnaktn ssiḍinen zikk-lli (ar tasut tiss 19) 1 d amḍan amnzu, mac ɣ tizwuri n tasut tiss 20, issinf yan umsasa 1 zɣ imḍanen imnza

25 n imḍanen imnza imẓẓiyn f 100 :

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 d 91. (Ɣr uggar...)


Lqist n ɣassa

Fig. 1

Ɣ taskriɣmrt, Asaḍuf n id kusinus (ittawsan ula s yism n tanfalit n kusinusaskkud n Al Kaci) tga yan usaḍuf nna ismunn tiɣziwin n tasgiwin n kra n umkṛaḍ d kusinus n yan zɣ tiɣmriwin. S uswuri n tirra zund tin Fig. 1, asaḍuf n iwankn n id kusinus

maɣ tga tiɣmrt lli illan gr tiɣziwin d d tasga tamuzzlt n . I tawlaft ann nit rad darnɣ ilin ula:

Asaḍuf n id kusinus ar tskar asmata i askkud n Pythagor, nna ur illan dar imkṛaḍn unziɣn: iɣ tga tiɣmrt taɣadant (nna dar illa 90 daraja, nɣ s raḍyan), hann , s ɣmk ad as iskar usaḍuf n id kusinus asmata i askkud n Pythagor:

Ar nswurri s usaḍuf n id kusinus n id kusinus iɣ nra ad nḥasb tiɣmrt tiss kraḍt n kra n umkṛaḍ iɣ yad tawssan darnɣ snat tasgiwin d tiɣmrt nnsn iqqnn, d ula ɣ lḥsab n tiɣmriwin n kra n umkṛaḍ iɣ yad ttawssan darnɣ tasgiwin nns s kraḍ-itsnt. (Ɣr uggar...)


Awsat ɣ Wikipidya taclḥit

  • Tram ad tdrum? Ɣṛat ilugann d taratin, tḍfṛm aylli illan ɣ tasniwin n Tiwizi. Ur d iqqan uzmmem mac ittuwṣṣa sis
  • Awsat ɣ tirra n imgradn n Wikipidya s tutlayt Taclḥit af ad yimɣur uggar.
  • Iɣ tsɣawsat s tiwisi ɣ tirra n imnnitn, tẓḍaṛt ad nn taggʷt ɣ Tasna n Tiwisi.